

NOVEMBER 3 – 4 **TexSAV** 2 0 1 7

TEXAS SECURITY AWARENESS WEEK

ERIK JONSSON SCHOOL OF ENGINEERING & COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT DALLAS

Cryptography

- Introduction
- Classical Confidentiality
- Modern Confidentiality
- Integrity
- Authentication

Introduction

Cryptography in the Real World

- Cryptography is the process of writing or reading secret messages or codes (Merriam Webster)
- Been used throughout recorded history

Terminology

- Plaintext
 - The original readable message
- Ciphertext
 - \circ An encrypted message
- Cipher
 - An algorithm to convert plaintext to ciphertext and vice versa
- Key
 - A string that modifies the cipher

Uses for Cryptography

- Confidentiality
 - Used since the dawn of recorded history to protect information
 - Continues to this day aided by computers
- Integrity
 - Provides some information that can be used to determine if a message has been changed
- Authentication
 - Allows proof that you are who you say you are

Classical Cryptography

Early Classical Cipher Categories

- Classical ciphers worked with the symbols used in their language
- Substitution Cipher
 - Replace the symbols in the message with other symbols according to some key
- Transposition Cipher
 - Rearrange the symbols according to the key

Substitution Ciphers

- A mapping is created based on the key
- Symbols in the message are substituted based on the mapping
- Both sides need to know the mapping to encode or decode the message

Examples:

- Caesar Cipher
- Substitution Cipher
- Vigenère Cipher

Caesar Cipher

- Shift the alphabet a certain number of places
- The key is the number of places shifted
- How to defeat?

Caesar Cipher with a shift of 3

A	В	С	D	E	F	G	н	I	J	K	L	М	Ν	0	Ρ	Q	R	S	Т	U	V	w	Χ	Y	Ζ
A	В	С	D	E	F	G	Н	1	J	K	L	М	N	0	Ρ	Q	R	S	Т	U	V	w	Х	Y	Ζ

Shift: 0

Plain Text: Hello

Cipher Text:

Caesar Cipher - How To Defeat

- Only 26 permutations
 - 25 since one is to change nothing
- Try every combination
- Look for common patterns dependant upon language
- How could you improve?

Substitution Cipher

- Generate a mapping where each symbol is paired with another symbol independent of the others
- Key is the mapping string
- How many possible mappings?
- How to defeat?

Key:

HTKCUOISJYARGMZNBVFPXDLWQE

Plaintext:

P = HELLO SIMPLE SUB CIPHER

Ciphertext:

C = SURRZ FJGNRU FXT KJNSUV

Substitution Cipher - How To Defeat

- Number of occurrences of a symbol
 - A symbol is always mapped with another symbol
- Use frequency analysis to determine the most common symbols
 - Work from the most common
- How to improve?

- Artificially extend the key to be the length of the plaintext.
- Plaintext $P = p_0 p_1 p_2 \dots p_{m-1}$
- Ciphertext $C = c_0 c_1 c_2 \dots c_{m-1}$
- Key $K = k_0 k_1 \dots k_{n-1}$
- Encryption: $C_i = (P_i + k_{i \mod n}) \mod 26$
- Decryption: $P_i = (C_i k_{i \mod n}) \mod 26$

- To encrypt:
 - Extend the key to be the length of the plaintext.
 - Use a Vigenère table to get the ciphertext.
- Example:
 - Plaintext: NINE ONE ONE AND ONE ONE TWO
 - Key: FOUR FOU RFO URF OUR FOU RFO
 - Ciphertext: SWHV TBY FSS UEI CHV TBY KBC

Plaintext:	NINE	ONE	ONE	AND	ONE	ONE	TWO
Key:	FOUR	FOU	RF0	URF	OUR	FOU	RFO
Ciphertext:	SWHV	TBY	FSS	UEI	CHV	TBY	KBC

Plaintext:	NINE	ONE	ONE	AND	ONE	ONE	TWO
Key:	FOUR	FOU	RF0	URF	OUR	FOU	RF0
Ciphertext:	SWHV	TBY	FSS	UEI	CHV	TBY	KBC

Plaintext:	NINE	ONE	ONE	AND	ONE	ONE	TWO
Key:	FOUR	FOU	RF0	URF	OUR	FOU	RF0
Ciphertext:	SWHV	TBY	FSS	UEI	CHV	TBY	KBC

Plaintext:	NINE	ONE	ONE	AND	ONE	ONE	TWO
Key:	FOUR	FOU	RF0	URF	OUR	FOU	RF0
Ciphertext:	SWHV	TBY	FSS	UEI	CHV	TBY	KBC

Plaintext:	NINE	ONE	ONE	AND	ONE	ONE	TWO
Key:	FOUR	FOU	RF0	URF	OUR	FOU	RF0
Ciphertext:	SWHV	TBY	FSS	UEI	CHV	TBY	KBC

- To break:
 - Look for groups of three or more characters that regularly repeat.
 - Find a common factor for the distance between the repeating groups.
 - Perform frequency analysis on subsets of characters.

Key:ABCDABCDABCDABCDABCDABCDABCDPlaintext:CRYPTOISSHORTFORCRYPTOGRAPHYCiphertext:CSASTPKVSIQUTGQUCSASTPIUAQJB

- To break:
 - Look for groups of three or more characters that regularly repeat.
 - Find a common factor for the distance between the repeating groups.
 - Perform frequency analysis on subsets of characters.

Key:ABCDABCDABCDABCDABCDABCDABCDABCDPlaintext:CRYPTOISSHORTFORCRYPTOGRAPHYCiphertext:CSASTPKVSIQUTGQUCSASTPIUAQJB

Transposition Ciphers

- These ciphers shift the original positions of each plaintext character. The ciphertext is just a permutation of the plaintext.
- Rail fence cipher
- Route cipher

Scytale

- Utilized by the Spartans of ancient Greece
- A strip of parchment would be wrapped around the scytale and the message written
- Both sides would need a scytale of the same diameter
- Easily breakable, the message itself hints at the encryption method

- The plaintext is written downwards on "rails" of an imaginary fence, then written back upwards when the bottom is reached.
- Plaintext: WEAREDISCOVEREDFLEEATONCE
 W...E...C...R..L...T...E
 .E.R.D.S.O.E.E.F.E.A.O.C.
 ..A...I...V...D...E...N.
 Ciphertext: WECRLTEERDSOEEFEAOCAIVDEN

- The plaintext is written downwards on "rails" of an imaginary fence, then written back upwards when the bottom is reached.
- Plaintext: WEAREDISCOVEREDFLEEATONCE
 W...E...C...R...L...T...E
 .E.R.D.S.O.E.E.F.E.A.O.C.
 ..A...I...V...D...E...N.
 Ciphertext: WECRLTEERDSOEEFEAOCAIVDEN

- The plaintext is written downwards on "rails" of an imaginary fence, then written back upwards when the bottom is reached.
- Plaintext: WEAREDISCOVEREDFLEEATONCE
 W...E...C...R..L...T...E
 .E.R.D.S.O.E.E.F.E.A.O.C.
 ..A...I...V...D...E...N.
 Ciphertext: WECRLTEERDSOEEFEAOCAIVDEN

- The plaintext is written downwards on "rails" of an imaginary fence, then written back upwards when the bottom is reached.
- Plaintext: WEAREDISCOVEREDFLEEATONCE
 W...E...C...R...L...T...E
 .E.R.D.S.O.E.E.F.E.A.O.C.
 ..A...I...V...D...E...N.
 Ciphertext: WECRLTEERDSOEEFEAOCAIVDEN

- The plaintext is written downwards on "rails" of an imaginary fence, then written back upwards when the bottom is reached.
- Plaintext: WEAREDISCOVEREDFLEEATONCE
 W...E...C...R..L...T...E
 .E.R.D.S.O.E.E.F.E.A.O.C.
 .A...I...V...D...E...N.
 Ciphertext: WECRLTEERDSOEEFEAOCAIVDEN

- The plaintext is written downwards on "rails" of an imaginary fence, then written back upwards when the bottom is reached.
- Plaintext: WEAREDISCOVEREDFLEEATONCE
 W...E...C...R...L...T...E
 .E.R.D.S.O.E.E.F.E.A.O.C.
 ..A...I...V...D...E...N.
 Ciphertext: WECRLTEERDSOEEFEAOCAIVDEN

- The plaintext is written downwards on "rails" of an imaginary fence, then written back upwards when the bottom is reached.
- Plaintext: WEAREDISCOVEREDFLEEATONCE
 W...E...C...R...L...T...E
 .E.R.D.S.O.E.E.F.E.A.O.C.
 ..A...I...V...D...E...N.
 Ciphertext: WECRLTEERDSOEEFEAOCAIVDEN

- The plaintext is written downwards on "rails" of an imaginary fence, then written back upwards when the bottom is reached.
- Plaintext: WEAREDISCOVEREDFLEEATONCE
 W...E...C...R...L...T...E
 .E.R.D.S.O.E.E.F.E.A.O.C.
 .A...I...V..D...E..N.
 Ciphertext: WECRLTEERDSOEEFEAOCAIVDEN

• The plaintext is written on a grid of given dimensions and padded with low-frequency characters.

- The key is how you derive the ciphertext: "Spiral counter-clockwise, starting from the top right."
- Ciphertext: **EOEFROIRWEADCEDETCXJNALEVSE**

• The plaintext is written on a grid of given dimensions and padded with low-frequency characters.

- The key is how you derive the ciphertext: "Spiral counter-clockwise, starting from the top right."
- Ciphertext: **EOEFROIRWEADCEDETCXJNALEVSE**

• The plaintext is written on a grid of given dimensions and padded with low-frequency characters.

W R I O R F E O E E E S V E L A N J A D C E D E T C X

- The key is how you derive the ciphertext: "Spiral counter-clockwise, starting from the top right."
- Ciphertext: **E0EFROIRWEADCEDETCXJNALEVSE**

• The plaintext is written on a grid of given dimensions and padded with low-frequency characters.

W R I O R F E O E E E S V E L A N J A D C E D E T C X

- The key is how you derive the ciphertext: "Spiral counter-clockwise, starting from the top right."
- Ciphertext: **EOEFROIRWEADCEDETCXJNALEVSE**

• The plaintext is written on a grid of given dimensions and padded with low-frequency characters.

W R I O R F E O E E E S V E L A N J A D C E D E T C X

- The key is how you derive the ciphertext: "Spiral counter-clockwise, starting from the top right."
- Ciphertext: **EOEFROIRWEADCEDETCXJNALEVSE**

• The plaintext is written on a grid of given dimensions and padded with low-frequency characters.

- The key is how you derive the ciphertext: "Spiral counter-clockwise, starting from the top right."
- Ciphertext: **EOEFROIRWEADCEDETCXJNALEVSE**

• The plaintext is written on a grid of given dimensions and padded with low-frequency characters.

- The key is how you derive the ciphertext: "Spiral counter-clockwise, starting from the top right."
- Ciphertext: **EOEFROIRWEADCEDETCXJNALEVSE**

• The plaintext is written on a grid of given dimensions and padded with low-frequency characters.

- The key is how you derive the ciphertext: "Spiral counter-clockwise, starting from the top right."
- Ciphertext: **EOEFROIRWEADCEDETCXJNALEVSE**

• The plaintext is written on a grid of given dimensions and padded with low-frequency characters.

- The key is how you derive the ciphertext: "Spiral counter-clockwise, starting from the top right."
- Ciphertext: **EOEFROIRWEADCEDETCXJNALEVSE**

Modern Cryptography

Modern Cryptography

- Cryptography was greatly changed by the use of first analog then digital computers
 - More complex algorithms
 - Easier to break algorithms
- Increased focus on mathematics
 - Messages had to be machine readable

Encodings

- With computers messages are now in binary
 - Binary represented in different ways for humans to understand
- Different character sets such as ASCII, Unicode
- Hex: Uses base 16 numbers to avoid long strings of binary
- Base64: Uses base 64 numbers to condense it further

Examples:

- ASCII hello
- Binary 01101000
 01100101 01101100
 01101100 01101111
- Hex 0x68 0x65 0x6c 0x6c
 0x6f
- Base64 aGVsbG8

XOR

- Common operation in computers
- Allows use to manipulate binary bits based on an input
- If A is plaintext and C is ciphertext, then we can use XOR to encrypt and decrypt a message using key B

 $(A XOR B = C) \Leftrightarrow B XOR C = A$

А	В	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

One Time Pad

- Achieves perfect secrecy, provides no information on the plaintext
 - Only if key same length as the message
- Adds each symbol in plaintext with corresponding symbol in the key

With ROT13:

With One Time Pad:

One Time Pad Usage

- Used during the Cold War
 - Allowed for secure communication later on an unsecured channel
- Requires the key to be securely distributed in advance
 - Key can also be used only once
- Distribution of a key the same length of the message is difficult
 - How could you make it work with a smaller key?

Modern Cipher Categories

<u>Symmetric</u>

- Uses a shared secret key to encrypt and decrypt messages
- Requires the key to be distributed in a secure manner

<u>Asymmetric</u>

- Uses a two separate, mathematically related keys to encrypt and decrypt
 - A message encrypted with one key can only be decrypted with the other
- Each person will have a public/private keypair

Symmetric Key Encryption

- Shared key is used in the cipher algorithm
 - \circ Different algorithms such as DES, AES
- Requires the key to be distributed securely
- Can generate more keys based off the original secret key
- Relatively quick
- Used in the majority of communication encryption schemes

Asymmetric Key Encryption

- A pair of related keys are generated in advance for each user
- Private key is kept secret, public key is shared
- Any message encrypted with the public key can only be decrypted with the private key, and vice versa
- Encryption is relatively slow and complex
- Used for symmetric key distribution and authentication

Integrity

Cryptography and Computers

- Introduction of computers changed how cryptography is done
- Also introduced new uses for cryptography
- The fast computation allowed for values to be quickly generated based on message contents
- This value can be created at both sender and receiver, then compared

Hash Functions

- One-way algorithm
- Given any input of any length, produces a string of a given length n
- Used for integrity, message digests, and password storage

Properties of Good Hash Functions

- Impossible to reverse
- Output is always of a fixed size
- Changing any part of the input changes the hash completely
- Hard to find collisions, where two inputs give the same output

Authentication

Proving Who You Are

- Communication is done increasingly digitally
- Difficult to tell if someone really is who they say they are
- Cryptography provides us tools that can be used to prove someone's identity
- Prove by:
 - Knowing a secret only the person would know
 - Telling you something in a way only the person could

Known Shared Secret

- Prove who you are by knowing something, i.e. a password
- By comparing with a stored value, you can authenticate
- Don't compare against the plain password
- Add salt for extra flavour
 - \circ And security

Symmetric Encryption

- Prove identity by sending a message encrypted with the shared key
- Only the people who know the secret key should be able to use it
- Anyone who sends a recognizable message should be the person they say they are
 - Or are they?

- With an asymmetric key pair, any message encrypted with the private key can only be decrypted with the public key
- Since only the person should know their private key, only they could send a message
- Must make sure the public key is valid

Conclusion

Cryptography In The Future

- Quantum computers will eventually change the algorithms we use
- Continue to find ways to securely communicate
 - And validate life choices of math majors
- Questions?